
Review of GUI Reasoning and Testing Article

TP #05 Peer Reviewed by:

Alex Laird
CS 3310-01

Date: October 2, 2009
Operating Systems

Fall 2009
Computer Science, (319) 360-8771
alexdlaird@cedarville.edu.edu

Grading Rubric Max Earn
On Time/Format 1
Correct 5
Clear 2
Concise 2
TOTAL 10

ABSTRACT
This paper is a review of the scholarly journal article A Generic
Library for GUI Reasoning and Testing by João Carlos Silva, João
Saraiva, and José Cressac Campos[2].

Keywords
Scholarly, Review, Graphical, User, Interface, Reasoning, Testing

1. INTRODUCTION
The journal article reviewed discusses how essential the user in-

terface is to an application and how frequently its implementation
is overlooked or treated flippantly. Moreover, the easy-to-use tools
that are provided by many Integrated Development Environments
(IDE) create slow Graphical User Interfaces (GUI) and generated
bloated and ugly code.

The proposal is that designers need to spend more time making
their GUIs intuitive and friendly rather than daunting powerhouses.
To do this, sophisticated reverse engineering methods were created
to test and analyze several GUI implementations to come to a better
understanding of what it takes to create a proper front-end for an
application.

2. BEHAVIORAL MODELS
The idea is a tool would generate a behavioral model[1] from a

given GUI from the various components and their actions. It treats a
specific GUI as a Finite State Machine (FSM) and diagrams out the
paths that can be taken through the interface. From these models,
analysis can be made to eliminate unnecessary paths, shorten paths
for a particular action, and combine paths that execute the same or
similar actions.

GUISURFER was the first tool developed to do this. Specifi-
cally, it was used to derive and test a user interface developed using
the Swing toolkit in Java. However, other such tools have been
made to generate behavioral models for other programming lan-
guages as well.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2009, Alex Laird, CS 3310-01 Operating Systems Fall 2009,
Cedarville University, Cedarville, Ohio USA
.

3. THE PARSING PROCESS
The tool should parse through the code of a GUI and find specific

objects that are to be physically manifest in the GUI, for instance a
JButton. The program should take objects it finds in the GUI and
place them into a model. It should break the GUI object’s behav-
iors down and represent them in the model as well. Therefore, if a
JButton is to validate a username and password and then launch a
new window, these actions would be represented in the model and
could effectively be manifest in a state diagram as well.

One method of effectively parsing the GUI is by creating slices[3]
from each GUI component. An Abstract Syntax Tree (AST) should
be created and used to model all GUI elements for easy referencing
and testing.

4. MODEL-BASED GUI TESTING
From the parsed model, tests can be more easily run on the

GUI using a tool called QuickCheck Haskell. The programmer
specifies a list of testing functions for QuickCheck to execute, and
QuickCheck does so using a large number of randomly generated
cases through the functions, specifically in reference to the GUI.
QuickCheck then reports back to the user how many tests were run,
whether they were run effectively, and the percentage of tests that
took x number of event sequence lengths.

5. CONCLUSIONS
The idea behind reverse engineering GUI code to optimize per-

formance is one that should be explored more. The frameworks,
specifically GUISURFER, that have been made towards this en-
deavour prove very useful. The interfaces in use today are fre-
quently unclear, muddled, over complex, and sometimes even non-
functional for all practical purposes. Though the ultimate test of a
GUIs usefulness will always ultimately be a user testing it, taking
strides to provide a usable GUI the first time are refreshing to hear
about.

6. REFERENCES
[1] P. Bumbulis. Combining formal techniques and prototyping in

user interface construction and verification. University of
Waterloo, 1996.

[2] J. C. Silva, J. Saraiva, and J. C. Campos. A generic library for
GUI reasoning and testing. ACM, 2009.

[3] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 1995.


	INTRODUCTION
	BEHAVIORAL MODELS
	THE PARSING PROCESS
	MODEL-BASED GUI TESTING
	CONCLUSIONS
	References

