EGCP 2110-01
Microprocessors
Laboratory #9

ADC and Interrupt Modes

Prepared By:
Alex Laird
Collin Barrett

on

Saturday, November 7th, 2009



Low-Level Source Code

Below is the assembly code that we ensured worked in the lab. We wrote it prior to having access
to the Z-80 Microprocessor to test it. Upon presentation, our code ran correctly.

rrrrrrrrrrrr L L r LTI I LI LI r I L LI LI LI LI L r LI rrrrrs

;Created by: Alex Laird and Collin Barrett

;Date: Nov. 3, 2009

;Class: Microprocessors

;Lab 9: ADC and Interrupt Modes

;Purpose: To study, via implementation, the use of interrupts.

rrrrrrrrrrrr L rr LTI rIL LI LI LI LI LI r LI L LT rrrrrrs

;point the program start to the beginning of memory
ORG 1800H

;disable and initialize the interrupt in ROM

DI
LD A, 00H
LD (1F418), A
LD A, 19H
LD (1F428), A
IM 1

MAIN:
LD HL, 0000H
LD B, 05H

;loop until an interrupt is received, gathering average of five
LOOP:

ET

OouT (0C8H), A
HALT

DEC B

JP Nz, LOOP
CALL OUTPUT

JP MATIN

;define the interrupt
ORG 1900H
;disable interrupt

DI
;read from the ADC and add to average
IN A, (0C8H)
LD E, A
LD D, O0OH
ADD HL, DE
RETI

;output results

OUTPUT:
LD
SLA
SLA
SLA
SLA

T

b



;multiply by 8 Dby shifting L left and rotating the carry into H
LD 00H
LD L
LD 00H
SLA
RL
SLA
RL
SLA
RL
;multiply by 2 by adding twice
ADC HL, BC
ADC HL, BC
;combine ones and tenths
OR H

~ N~ 0~

THEDH DD QW

;output the BCD and return
OouT (0COH), A
RET

Program Overview

The program uses an interrupt to gather the voltage being fed into the ADC from the 10k pot.
Interrupt Mode 1 is used, which means the Z80 jumps to ROM location 0038H and initializes the
interrupt mode. Once the interrupt is initialized, the Z80 jumps to the memory location specified
at 1F41H and 1F42H. 1900H, the address of our ISR (Interrupt Service Routine) is stored at these
memory locations prior to calling IM 1.

The main loop continues looping until an interrupt signal is received. Once an interrupt signal is
received, the voltage that the ADC has stored is gathered and accumulated with previously
gathered voltages. Five voltages are gathered to average them together. Once five voltages have
been gathered, the averaged voltage is output to the BCD.

In order to calculate the voltage stored on the ADC, we used the equation (x/256)*5.0 = v, where x
is the number given by the ADC to represent the voltage and v is the output voltage between 0.0
and 5.0. Since the gathered voltage must be multiplied by five, it was simpler to gather five
voltages and average (thus not having to divide by five) than to multiplying each gathered voltage
by five.

Table 1 shows the actual voltage, read from a multimeter, compared to the voltage output to the
BCD (which was calculated by our program).



BCD Voltage (V) | Multimeter Voltage (V) | Percent Difference
Minimum (0.0) V 0.0 6.43* 103 .00064%
1.0V 1.0 1.0108 1.08%
20V 2.0 1.9945 0.275%
3.0V 3.0 2.9953 0.157%
4.0V 4.0 3.970 0.75%
Maximum (5.0) V 4.9 4.957 1.163%

Table 1 Comparable Voltages

The average percent difference was 0.685%, meaning our output voltage to the BCD is very nearly
accurate, and most of the inaccuracy lies in rounding errors that are limited by the BCD and ADC
themselves.



