
Report for the IBM 650 Emulator in Python
Topic Paper #9

Put your name here
CS-3210-01

2/12/09
Survey of Programming Languages

Spring 2009
Computer Science, (319) 360-8771

alexdlaird@cedarville.edu

 Max Earn
On Time/Format 1

Correct 5

Peer
Reviewer

Clear 2
Concise 2

G
ra

di
ng

 R
ub

ric

Total 10 pts

ABSTRACT
This paper discusses the completed IBM 650 emulator developed using
the Python programming language.

Keywords
IBM 650, Python, Emulator

1. OVERVIEW
The emulator has the capabilities of reading and writing from and
to a text file (if two arguments are specified on instantiation),
reading from a text file and writing to the command line (if only
one argument is given), or reading and writting from and to the
command line (if no arguments are given).

The first batch of messages, up until a “+9999999999” is received
and stored in a list that emulates the memory. The second batch
of messages, up until the stop command “+9000000000” followed
by the program terminating “+9999999999” is stored in a list that
handles the messages. The connection to the input stream is left
open for continued reading if more read commands are given.

2. PARSING
Each message is parsed according to the IBM 650 specifications
given for this project. The lead ~# (where ~ is + or – and # is
some number) is the command operator; the first set of ### is the
memory location of the first value, the second set of ### is the
memory location of the second value, and the final set of ### is
the destination memory location.

3. TESTING
The biggest problems run into was in the test programs that were
given to run. Certain test programs outputted the destination
when they should have outputted the first memory location of the
message. As this is the case, some of the output may be incorrect,
though I tried to accommodate for this error as much as I could.
For the most part, I followed the convection of the “exercise” test
files provided and not the format used in many of the student test
files.

4. ERROR HANDLING
As the specifications told us that the only input/output the
program should do should be strictly the input of the program and
the direct output (that being the answer) of the program, errors are
handled silently. If an error is received, the program will
terminate gracefully without causing the shell (or your memory)
to explode. However, if you are running the application from the
Python shell, certain exit codes will be given in the Traceback that
can be used to identify what error exactly went wrong. These
error codes are defined at the top of the code for the emulator. So
errors are caught, but the method of handling is to simply ignore
and terminate the program.

5. MOST CONCLUSIVE TEST
The overall best test that was run was created by Ryan Morehart
of our class. The program conclusively tested every single
operation the emulator was possible of. The output for this test
file should is probably the most reputable and is also the most
accurate. It has been provided in my main folder as “fib_out.txt,”
and Morehart’s test program is “fib.txt.”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Alex Laird, Cedarville University, Cedarville, Ohio, 45314
Copyright 2009 Alex Laird

