
Concurrency in Eiffel
Topic Paper #19 (Term Paper)

Alex Laird
CS-3210-01

4/20/09
Survey of Programming Languages

Spring 2009
Computer Science, (319) 360-8771

alexdlaird@cedarville.edu

 Max Earn
On Time/Format 1

Correct 5

Peer
Reviewer

Clear 2
Concise 2

G
ra

di
ng

 R
ub

ric

Total 10 pts

ABSTRACT
This paper discusses in depth the elements of concurrency, the
Eiffel programming language, and specifically concurrency in
Eiffel.

Keywords
Concurrency, Eiffel, Programming, Language

1. INTRODUCTION
Concurrency in the realm of computer programming is the
concept of completing multiple processes at the same time
(concurrently). Eiffel, developed in 1986 by Bertrand Meyer, is a
statically typed, object-oriented programming language that is
known for having strong support for concurrency [4].

2. FOUNDATIONS OF CONCURRENCY
When programming is concurrent, multiple computations are
executing simultaneously, potentially interacting with each other.
This may happen on multiple cores on the same chip, time-shared
threads on the same processor, or on physically separated
processors, even across a network. At the highest level, these
multiple processes running concurrently are what concurrency is.
Generally, each process is referred to as a thread [2]. Another
term for concurrency could be parallel processing, though the
term concurrency envelopes more than just parallel processing.

Since the entirety of a computer’s processing power is almost
never fully used, especially with the large-scale processors in
production today, a vast amount of processing speed is wasted
when any application is run. When the application is launched, it
opens an initial thread that allows it to use a certain number of
resources on a specified processor. A well-developed program
that makes use of threads will launch additional threads
throughout the program to complete tasks in the background while
the user continues using the application that is running on the
main thread. Concurrency allows a program to continue running,
send a computation out to another process that the user never
knows about, and then return the result to the user in a timely
fashion. The beauty of it is, if implemented efficiently, the user
may not even realize when massive computations are done. The
principles of concurrency are synchronous processing and shared
resources [4].

3. PROCESSES IN CONCURRENCY
When a program is running concurrently, all of its processes must
operate, interact, and synchronize with each other in a proper
fashion. Some languages allow this more easily than others, but
proper communication between two processes allows one process
to influence the execution of another. If two processes do not
communicate properly, this may cause a failure to execute in
another process, or it may cause another process to execute
improperly, thus rendering the wrong result or a runtime error [2].

Processes occur at unpredicted speeds and times. There is no
guarantee that two processes will execute before or after each
other. This being the case, processes must be synchronized and
communicate properly if they are to produce the desired result.
To do this, two processes that need to communicate should use
shared variables. The shared variables keep track of the state of
each process so another process does not attempt to manipulate
anything before it is allowed. Essentially, synchronization in
concurrency is a set of constraints on the ordering of events.
When necessary, the programmer must specify a synchronization
mechanism in order to delay certain events until the prerequisite
conditions are met [2].

Of course, parallel processes can launch in a specified order. The
key is that, if order is critical, the preprocess conditions are met
before a process is launched.

4. RESOURCE LOCKING AND
UNLOCKING
Concurrency incorporates the sharing of resources, especially
across a network or in a shared database. When these resources
are in use, the program using them may lock them if it requires the
resource in its entirety without any exceptions. An example of a
resource needing to be locked may be two computers trying to
manipulate the same file. Concurrency would allow the file to be
viewed read-only by multiple systems, but it is locked to editing
except by one of the systems, whichever system got to it first [3].

When a system is done using the locked resource, it can release
the resource back to the shared database to be used by another
system. When it is released, this is called unlocking the resource
[3].

5. THE DINING PHILOSOPHERS
PROBLEM
The Dinning Philosophers Problem has become one of the most
prominent examples of concurrency in Computer Science. It was
first introduced by Edsger Dijkstra in 1965 as a synchronization
problem of five computers competing for access to five shared
tape drive peripherals; later it was retold as five philosophers
sitting around a table. This problem illustrates deadlock, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Alex Laird, Cedarville University, Cedarville, Ohio, 45314
Copyright 2009 Alex Laird

resource starvation assuming each philosopher takes a different
fork and each wants to eat [5].

Each philosopher sitting at the table can be doing one of two
things: eating or thinking. If they are eating, they are not
thinking; if they are thinking, they are not eating. In the center of
the circular table is a large bowl of spaghetti, and sitting to the
right of each philosopher is a fork. This being the case, there is a
fork both to the right and to the left of each philosopher. The
philosophers understand that they must have two forks in order to
be eating the spaghetti. If each philosopher holds his left fork,
none of them will be holding two forks, therefore none of them
will be eating. This creates the problem of deadlock.

Since there will not be enough available forks for each of the
philosophers to be eating at the same time, this problem illustrates
our concept known as concurrency. A philosopher can take two
of the forks, thus illustrating a program locking a resource, but
then when another philosopher wants to eat he must wait for the
eating philosopher to unlock his fork and free the resource so he
can use it.

There are many solutions to the problem, but essentially some
external source (in this example, for instance, we could say a
waiter) must be introduced to inform the philosophers when a
resource (fork) is free or not. The waiter would be the only
person aware of the status of every fork at the table, and each
philosopher would have to ask the waiter for permission to lock a
particular second fork for himself [5].

6. CONCURRENCY IN SPECIFIC
PROGRAMMING LANGUAGES
Concurrency is a standard construct in many languages and an
extension to others. Depending on the language and the
programming environment, concurrency may be easier or more
difficult to achieve.

The most commonly used languages today have at least some sort
of construct for concurrency. Java and C#, two of the most
widely known interpreted languages in use today, support threads
in the default libraries. C++, like many other languages, is one
that have extensible support for threads through POSIX, but only
if the library is included. For instance, in C++, if you are
compiling on a Windows-based system, you will probably have to
include the pthreads library. However, if you are developing in a
Unix-based environment, pthreads are probably just an include
statement away.

Some of the most popular programming languages that have
concurrent attributes integrated into the development are Ada,
MultiLisp, Io, Concurrent Pascal, and Scala. There are many
languages that are not concurrent by nature, but are made
concurrent through some alternative implementation. For
instance, Concurrent Pascal or Stackless Python.

7. THE EIFFEL PROGRAMMING
LANGUAGE
Bertrand Meyer developed Eiffel to be an object-oriented,
extendable, and efficient programming language that includes a

basic class library, integrates easily with other programming
languages, and supports such tools as configuration management,
documentation, and debugging. Portability was also a large
player in the design implementation of Eiffel [6]. Eiffel was
influenced by such languages as Ada and Simula, and it has
influenced many other languages such as Java, Ruby, and C# [7].
Other key features integrated directly into Eiffel include
parallelism, when two processes are executed at the same time,
thus running concurrently, garbage collection, and support for
multiple inheritance, something that stems from Eiffel’s intention
to be reusable [6].

The intended audience for Eiffel is partially students interested in
learning the fundamental principles of object-oriented
programming and developers looking to develop efficient medium
to large-scale software projects. Eiffel has generally shunned
coding shortcuts and optimization tricks to help the compiler; it
emphasizes readability to the programmer, and it also encourages
the programmer to focus on the important aspects of a program
without getting hung up on syntactical and implementation
details. The simplicity of the Eiffel coding style is meant to
promote simple, extensible, reusable, and reliable computer
programs [7]. The syntactical aspects of Eiffel are most similar to
C++, Java, or Python. If someone is familiar with any of these
object-oriented languages, learning Eiffel is fairly simple.

There are many compilers available for Eiffel, one GPL (General
Public License) distributed compiler is called SmartEiffel and
supports many features that are not found in the commercial Eiffel
compilers. The largest, most supported commercial compiler is
the licensed EiffelStudio, developed by Eiffel Software [10].

8. OBJECT-ORIENTATION IN EIFFEL
As previously stated, Eiffel is an object-oriented language. Eiffel
is a purely object-oriented language, but it does also provide an
open architecture for interfacing with external software developed
in other programming languages that may not purely object-
oriented or even object-oriented at all. However, wanting to keep
up with the current standard, Eiffel was written to be purely
object-oriented for a few reasons [6][7].

• The emphasis of Eiffel is around the objects it
manipulates, not the functions it performs on them.
Specifically, Eiffel emphasizes reusing the objectified
structure as a whole rather than the isolated procedures.

• Objects are instances of abstract data types. This way
data structures are known by their interface instead of
through their representation.

• Classes, as in most object-oriented languages, are the
basis of an object representation. The class describes
the implementation of the abstract data type.

• Classes are developed as collection units that are
interested in a particular topic and useful for
manipulating that topic independent from the
overarching system.

• Structures illustrate important relationships between
classes and objects, particularly the multiple inheritance
relation.

The object-oriented nature of Eiffel is important because classes
assist greatly in the implementation of threads and concurrency.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Alex Laird, Cedarville University, Cedarville, Ohio, 45314
Copyright 2009 Alex Laird

Eiffel enables and encourages the expression of formal properties
of a class through assertions. Assertions may appear in three
different orders for a class:

• Preconditions. These conditions in the assertion must
be satisfied before a routine is called. Preconditions are
introduced by the keyword “require.”

• Postconditions. These conditions require that particular
conditions have been satisfied after the return statement
of a routine happens. Postconditions are introduced by
the keyword “ensure.”

• Invariants. Class invariants must be satisfied by objects
of the class at all times, and especially after the object
has been created or a routine is called. They help
maintain general consistency within an object and are
specified in the invariant clause of the class definition.

Assertions assist in maintaining the reliability of the object-
oriented Eiffel code.

9. EIFFEL COMPARED TO OTHER
LANGUAGES
Eiffel programs are compiled like C++, not interpreted like Java,
and they directly compile via C to native code. This being the
case, Eiffel programs have speeds relatively comparable a C and
directly comparable to C++ programs. Obviously, since Eiffel is
not interpreted, running speeds are significantly faster than Java
applications, both in speed and in memory usage. Like Java,
Eiffel incorporates the resource-friendly construct of garbage
collection. Unlikely Java, Eiffel’s type system is stronger, more
robust, and safer.

Eiffel supports generics like Java (known as templates in C++),
though they are far more efficient than either Java or C++, since
Eiffel has had them built into the construct of the language from
the beginning and they are added features to Java and C++ [10].

Eiffel was largely influenced by both Java and C++, so the syntax
is strikingly similar to both. However, unlike either of the
languages and more like Python, Eiffel does require bracket ({
and }) to open and close sections. You may use brackets, but the
defining mark of a section is an indentation, and a section is
closed by the keyword “end.” Additionally, though there are
broad rules for how case must be handled, Eiffel is not a case
sensitive language. In general, Eiffel prides itself on having a
considerably more readable and pretty syntax than Java, C++, or
even Python.

Like all of the most popular languages, Eiffel does support
exception handling. However, Eiffel sees catching and handling
exceptions gracefully a crucial element in elegant programming,
and since Eiffel strives to be a simplistic language, and especially
tries to be a good language for teaching beginners how to
program, Eiffel takes exception handling one step further than
most languages. It incorporates a “rescue/retry” strategy for error
recovery.

10. CONCURRENCY IN EIFFEL
Eiffel is known as a language that easily incorporates
concurrency. The language itself builds particular processes
around each other into subsystems. If necessary, one object may
call two different subsystems and they will be executed as
separate threads at the same time. Since one of the main goals
specified in the development of Eiffel is parallelism, and
parallelism is a direct descendent of concurrency, Eiffel is known
as a concurrent language by default. However, since Eiffel
programs are compiled on concurrent levels and no large-scale
support is implemented directly into the language, it can be
slightly more complicated to make your own programs concurrent
beyond what Eiffel does automatically at compile time [9].

When Eiffel compiles two things that it wants to run parallel to
each other, it makes each one of them a PROCESS object and
creates a new thread execution for it. The limited PROCESS
object allows some simple manipulation, the most significant of
what is the wait-by-necessity principle. The wait-by-necessity
command is invoked only when a new process attempts to use the
result of another process that has not been completed yet. Beyond
this simple rule, other concurrency packages must be used. Every
commercially developed Eiffel IDE provides some mechanism for
concurrency, but the most widely used concurrency extension for
Eiffel is the third-party developed SCOOP.

11. SCOOP AND EIFFEL
Currently, fully-featured concurrency is most easily achieved with
the use of the additional packages provided by SCOOP (Simple
Concurrent Object-Oriented Programming), but EVE (Eiffel
Verification Environment), the Eiffel research group for future
developments in Eiffel, is striving to integrate the SCOOP
concurrency packages into future releases of the Eiffel
programming language [8][10]. SCOOP is the easiest way to use
threads in Eiffel.

SCOOP was designed specifically for Eiffel, but it’s designed in
such a way that any programming language fitting the
specifications for it would easily use it [8].

Attaining concurrency deliberately for an Eiffel object is far
simpler than any of the languages predecessors. Simply
appending the keyword “separate” to the beginning of a class
definition. When the compiler sees this, it will recognize this as a
parallel class and give it the instructions to be run concurrently
when called in runtime. Using SCOOP, things called processors
are used to explain the execution of a separate object, and the
“separate” keyword is used to instantiate the execution [9].

SCOOP allows for the reserving of objects and resources, similar
to locking and unlocking. For instance, if two threads that are to
be executed at the same time are going to manipulate some third
thread, and the other in which threads one and two are executed
depends on the result manipulated in thread three, the third
thread’s resource must be reserved locked by thread one. When
thread two sees that the object is reserved, it will simply wait-by-
necessity until the object becomes unreserved. Then and only
then will it perform its operation on the object and continue on to
thread three [9].

SCOOP is simple because it introduces only a few key concepts
on top of the object-oriented model. SCOOP is object-oriented
because it maintains and expands upon the already present object-
oriented principles withheld in Eiffel or a similarly appropriate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Alex Laird, Cedarville University, Cedarville, Ohio, 45314
Copyright 2009 Alex Laird

programming language. SCOOP is simple and concurrent
because it allows for the easy use of concurrency, threads, and
parallelism without forcing the programmer to meddle in the
painful errors and headaches that come with attempting to
properly annotate and synchronize a program before it can run
concurrently [8].

12. PRAISE FOR EIFFEL
As stated previously, Eiffel does have a compiler under the GPL,
which means it is open-source and cross platform. The standard
IDE, EiffelStudio, is available for numerous platforms, and there
are dozens of other IDEs and compilers that will write and
compile Eiffel code into binaries or bytecodes for any platform.

Much like Java, Eiffel has very well documented in APIs
(Application Programming Interfaces) online how the features of
the included libraries work and can be used. Additionally, there
are numerous tutorials provided online for free at Eiffel’s official
website. Also similar to Java’s Javadoc, Eiffel has the ability to
extract documentation automatically. This is an extremely
important feature, especially in large-scale development and when
working on with a team [10].

Eiffel helps you catch your mistakes. With the more recent
addition of AutoTest, Eiffel has become increasingly better at
catching its own mistakes as well as yours. Whether the mistakes
are syntactical or runtime generated, AutoTest will do its best to
catch them. Even if the problem isn’t any sort of an error, perhaps
it simply isn’t optimal for performance, AutoTest may catch it. In
fact, after implementing AutoTest for the first time, Eiffel
Software found many bugs in its standard libraries that it had been
using for years [10].

EiffelStudio comes with EiffelVision, a GUI (Graphical User
Interface) developing utility that allows the programmer to easily
and efficiently create a Windows, GTK+, or Mac OS X visual
interface. Additionally, EiffelStudio doesn’t just allow
compilation of binaries to numerous platforms via C and C++
libraries, it also allows for the compilation of bytecode to Java or
most things on the .NET framework, including C#.

13. CONCLUSIONS
Eiffel is not a new programming language by any means, though
it is younger than its grandparents, Java and C++. Even still, it’s a
wonder the language has not seen more mainstream attention with
its simplicity, feature richness, and attention to documentation and
detail. Perhaps if the designers at Eiffel Software continue
developing Eiffel into an even more powerful language with cross
platform binary compilation support, emulation bytecode
compilation, multiple inheritance that doesn’t cause endless
headaches, neatness and auto-correction, and almost seamless
integration with concurrency, Eiffel will be able to give Java a bit
of a competition in the near future. Until then, Eiffel will remain
one of the best-kept secrets of the elite programmers around the
world.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Alex Laird, Cedarville University, Cedarville, Ohio, 45314
Copyright 2009 Alex Laird

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Alex Laird, Cedarville University, Cedarville, Ohio, 45314
Copyright 2009 Alex Laird

14. REFERENCES
[1] Sebesta, Robert W., 2008. Concepts of Programming

Languages. Addison-Wesley, Boston. ISBN: 978-0-321-
49362-0

[2] Andrews, G. R. and Schneider, F. B. 1983. Concepts and
Notations for Concurrent Programming. ACM Comput. Surv.
15, 1 (Mar. 1983), 3-43. DOI=
http://doi.acm.org/10.1145/356901.356903

[3] Thomasian, A. 1998. Concurrency control: methods,
performance, and analysis. ACM Comput. Surv. 30, 1 (Mar.
1998), 70-119. DOI=
http://doi.acm.org/10.1145/274440.274443

[4] "Concurrent Computing." Wikipedia, the free encyclopedia.
20 Apr. 2009
<http://en.wikipedia.org/wiki/Concurrent_computing>.

[5] "Dining Philosophers Problem." Wikipedia, the free
encyclopedia. 20 Apr. 2009
<http://en.wikipedia.org/wiki/Dining_philosophers_problem
>.

[6] Meyer, B. 1987. Eiffel: programming for reusability and
extendibility. SIGPLAN Not. 22, 2 (Feb. 1987), 85-94. DOI=
http://doi.acm.org/10.1145/24686.24694

[7] "Eiffel (Programming Language)." Wikipedia, the free
encyclopedia. 20 Apr. 2009
<http://en.wikipedia.org/wiki/Eiffel_(programming_language
)>.

[8] SCOOP | Scoop. 20 Apr. 2009 <http://scoop.origo.ethz.ch/>.

[9] Compton, Michael J. "SCOOP An Investigation of
Concurrency in Eiffel." ANU - ANU College of Engineering
and Computer Science - DCS. 22 Apr. 2009
<http://cs.anu.edu.au/~Richard.Walker/eiffel/scoop/mc-
thesis.pdf>.

[10] "Why Eiffel Might Be Worth a Second Look ||
kuro5hin.org." Kuro5hin.org || technology and culture, from
the trenches. 20 Apr. 2009
<http://www.kuro5hin.org/story/2006/10/31/20640/115>.

[11] "Parallel Computing." Wikipedia, the free encyclopedia. 23
Apr. 2009
<http://en.wikipedia.org/wiki/Parallel_computing>.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Alex Laird, Cedarville University, Cedarville, Ohio, 45314
Copyright 2009 Alex Laird

