
Report for the IBM 650 Emulator in Scheme
Topic Paper #14

Alex Laird
CS-3210-01

3/21/09
Survey of Programming Languages

Spring 2009
Computer Science, (319) 360-8771

alexdlaird@cedarville.edu

 Max Earn
On Time/Format 1

Correct 5

Peer
Reviewer

Clear 2
Concise 2

G
ra

di
ng

 R
ub

ric

Total 10 pts

ABSTRACT
This paper discusses the completed IBM 650 emulator developed using
the PLT Scheme programming language.

Keywords
IBM 650, PLT, Scheme, Emulator

1. OVERVIEW
The emulator has the capabilities of reading and writing from and
to a text file (if two arguments are specified on instantiation), or
reading and written from and to the command line (if no
arguments are given).

The first batch of messages, up until a “+9999999999” is received
and stored in a vector that emulates the memory. The second
batch of messages, up until the stop command “+9000000000”
followed by the program terminating “+9999999999” is stored in
a vector that handles the messages. The final batch of messages is
stored in a third vector until the end of the file is reached or the
users terminates by typing “done.”

2. PARSING
Each message is parsed according to the IBM 650 specifications
given for this project. The lead ~# (where ~ is + or – and # is
some number) is the command operator; the first set of ### is the
memory location of the first value, the second set of ### is the
memory location of the second value, and the final set of ### is
the destination memory location.

3. TESTING
As was the case with the Python emulator, the test programs
weren’t all accurate, so Morehart’s test program is probably the
most conclusive when deciding how well the emulator was
constructed.

4. ERROR HANDLING
Due to the functional and documentation limitations of the
Scheme programming language, error handling in this emulator
was kept to a minimum. Most situations where an error may
occur were simply surrounded with the (when) statement,
however, in general, it was heavily assumed that the user was
providing valid input at all times.

5. MOST CONCLUSIVE TEST
Again, the overall best test that was run was created by Ryan
Morehart of our class. The program conclusively tested every
single operation the emulator was possible of. The output for this
test file should is probably the most reputable and is also the most
accurate. The Scheme emulator, as of 3/21/09, completed all of
the tasks of this program correctly except the final one; though
rigorous debugging was done on my part, I could not figure out
where it was going wrong. I believe it is a loss of precision (or
rather too much precision) at some point due to Scheme having a
difficult dropping fractional bits down to the nearest integer.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Alex Laird, Cedarville University, Cedarville, Ohio, 45314
Copyright 2009 Alex Laird

