
EGCP 1010
Digital Logic Design (DLD)

Laboratory #3

Introduction to CedarLogic

Prepared By:
Alex Laird

on

September 24, 2007

Lab Partner:
Ryan Morehart

Objective:

The goal of this laboratory was to improve familiarity with CedarLogic,
waveforms, and oscilloscopes. The student should gain a better
understanding of Digital Logic Simulators and their abilities, and should
successfully design a circuit to implement
F(A,B,C,D) = ∑m(0,1,4,8,12,13) + ∑d(14,15) using NAND-NANDX and NOR-
NORX gates.

Procedure and Results:

For this lab, the class first implemented the following solution into a K-Map:

F(A,B,C,D) = ∑m(0,1,4,8,12,13) + ∑d(14,15)

The K-Map for this solution is shown in Table 1.

Table 1: K-Map for F

1 1 1 1

1 0 1 0

0 0 X 0

0 0 X 0

From these K-Maps, you can deduce the following Sum-Of-Product (SOP) solution by
grouping the 1’s.

F = A’B’C’ + C’D’ + AB

 <== (F SOP)

To get F’, we grouped the 0’s and received the following SOP solution.

F’ = A’BD + AB’D + C

 <== (F’ SOP)

To get the Product-Of-Sum (POS) of F, we complemented F’ using DeMorgan’s laws.

F = (A + B’ + D’)(A’ + B + D’)C’
 <== (F POS)

Before implementing F SOP and F POS, we created an Input Generation Circuit to
generate inputs, counting in ascending numerical order from 016 (00002) to F16 (11112).
The CedarLogic circuit is shown in Figure 1. The Input Generation Circuit receives a
four digit binary number in as an input and outputs those four digits. Each position is
split to have two separate outputs; a normal output, and its inverse.

Figure 1: Input Generation Circuit

We implemented F SOP and F POS using the generated outputs from the Input
Generation Circuit. The implementations of those are shown in Figure 2. F in SOP is
the AND-OR (AO) and NAND-NANDX (NN) circuits. F in POS form is shown by the
OR-AND (OA) and NOR-NORX (RR) circuits. However, all four circuits give the same
solution everywhere except E16 and F16. Notice that C has been inverted in the NOR-
NORX circuit. This is because the inversions must cancel out, and since it is inverted
on the front end of the NORX gate, the C must be inverted to make the circuit work.

Figure 2: Full Circuit in CedarLogic

After verifying that the circuits performed correctly for every number from 016 (00002) to
F16 (11112), with the exception of E16 and F16, we opened the Oscilloscope viewer in
CedarLogic. We created the oscilloscope shown in Figure 3.

Figure 3: Oscilloscope for F in CedarLogic’s Oscilloscope Viewer

From the Oscilloscope shown in Figure 3, the Truth Table shown in Table 2 was
deduced.

Table 2: Truth Table for F

A B C D AO OR NN RR

0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 1

0 0 1 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 0 1 1 1 1

0 1 0 1 0 0 0 0

0 1 1 0 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 1 1 1 1

1 0 0 1 0 0 0 0

1 0 1 0 0 0 0 0

1 0 1 1 0 0 0 0

1 1 0 0 1 1 1 1

1 1 0 1 1 1 1 1

A B C D AO OR NN RR

1 1 1 0 1 0 1 0

1 1 1 1 1 0 1 0

As shown by Table 2, 11102 and 11112 vary in outputs between AO to OR and NN to RR.
The reason for the difference in these last two numbers is because of the don’t-care bits
in the original F solution. This Truth Table and circuit is still correct. Since we don’t care
about those bits, we just ignore the fact that they differ.

Conclusion and Suggestions:

This lab gave me a good overview of CedarLogic and it’s available options. The
only real problems I ran into were with a few slight glitches in CedarLogic. Other
then that, we didn’t have any problems with this lab. Overall it was very
insightful.

Questions:

I. Which Transistor-Transistor Logic (TTL) chips that are available in lab would
be needed to implement each of the four implementations using the
minimum number of chips per implementation (AO, OA, NN, RR). Explain
which design you would implement in hardware if you were asked to and
why.

One (1) 74LS11 (3-input AND) and one (1) 74LS32 (2-input OR) chips for the
AND-OR circuit.
One (1) 74LS32 (2-input OR) and one (1) 74LS11 (3-input AND) chips for the
OR-AND circuit.
Two (2) 74LS10 (3-input NAND) chips for the NAND-NANDX circuit.
One (1) 74LS27 (3-input NOR) chip for the NOR-NORX circuit.

I would implement the RR circuit because it has the lowest cost. Though it
appears to have the same cost as the OA circuit, RR gates are faster, so this
circuit will perform the best of the four.

II. If all four implementations did not give the same result for every possible
input combination, and you believe your implementations are correct, explain
why.

Because of the don’t-care bits. On the K-Map, slots 11102 and 11112 both contain
X’s, which indicate that they can be either a 1 or 0, whichever is needed. Since
they were used in a grouping for both the 1 grouping and the 0 grouping (F and
F’), they show opposite answers when E16 or F16 are inputed to the circuits.

III. Since the CedarLogic program was student created and still under revision,
we want your input to improve and fix any bugs. Write out at least two
improvements you would like to see addressed.

The program almost always crashes when you try to delete a component that
already has many lines connected to another component. If you detach the lines
first, then delete it, sometimes it will allow you to delete it. Not always, however.
This also tends to happen more regularly the longer you have been using the
program, but, again, not always.

When creating the four circuits, we attempted to diagnose a problem for over ten
minutes because, strangely, the NN circuit was different from the other three
circuits a lot of the time. And obviously we were trying to get all four circuits to
continuously have the same output (except at E16 and F16). We couldn’t find
anything wrong with the circuit. We deleted the NAND gate that was attached to
the inputs C’ and D’ and replaced this gate with the exact same gate. Ironically,
the circuit worked from this point on. There was absolutely no logical reason for
this to “fix” the problem. We deleted the gate and replaced it with an identical
gate. The gate was a NAND gate, so perhaps there is a problem with something
in the NAND programming.

It would be really nice if it were a little easier to connect the lines between two
components. One way that would be significantly easier would be if you could
select multiple components, let’s say three for example, and then hold down
some key, like Ctrl or Shift, and then click on a three input gate of some kind and
the program would automatically connect all three of those lines to the gate and
the three components outputs. Also, instead of having to drop a line directly to
the input or output of some component, it would be nice if you could just drop a
line “anywhere” on a component and it would automatically connect the line to
the highest available input (or output if the line was coming from an input).

